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Basic Properties of Confidence Intervals



Learning Objectives

1. Understand the need for and utility of confidence intervals.

2. Understand the general process for constructing confidence
intervals.

3. Construct confidence intervals for normal population means.

4. Correctly interpret a confidence interval.

5. Use the margin of error to calculate necessary sample sizes.



Statistics is about quantifying
uncertainty . . . we are now ready to

start doing that.



Confidence Intervals

▶ Point estimates give no information regarding the reliability of
an estimate.

▶ We generally know that θ̂ ̸= θ, exactly.
▶ We may want a range of plausible values for θ.
▶ If we can specify a more narrow range, our estimate is more precise.

▶ Confidence intervals (CIs) are one form of interval estimate
which give a range of plausible values for a parameter of
interest.

▶ We call CIs random intervals as they are intervals with random
endpoints.
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Constructing Confidence Intervals: Overview
▶ Suppose that we have a point estimator, θ̂ for the parameter θ.

▶ We have discussed the sampling distribution of estimators. Suppose
θ̂ ∼ Ωθ.

▶ Since θ̂ is a random variable from Ωθ, we can make probability
statements regarding θ̂.

▶ Suppose that we find two values, a and b, such that

P(a ≤ θ̂ ≤ b) = 1 − α.

▶ Here we take α to be a relatively small value, such as 0.05.
▶ The values of a and b will depend on Ωθ, and as such on θ.
▶ As a result, if we had those values, we could solve a(θ) ≤ θ̂ and

b(θ) ≥ θ̂ to be inequalities on θ.
▶ This forms a confidnece interval for θ.
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Confidence Intervals

▶ When we solve for a(θ) ≥ θ̂ and b(θ) ≥ θ̂ we will have upper
and lower bounds on θ.

▶ These bounds will typically depend on θ̂ and on other unknown
parameters.

▶ When unknown parameters are involved, we may need to estimate them,
or apply other strategies.

▶ We take the lower bound, ℓ, and the upper bound u, and call [ℓ, u] the
α-level confidence interval.

▶ We can form confidence intervals for any level α, but typically
choose α ∈ {0.01, 0.05, 0.10}.
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Confidence Intervals: Normal Population

▶ Suppose that we have a sample from a normally distributed
population with mean µ and known variance σ2.

▶ We wish to estimate µ, using X .

▶ To form a confidence interval, recall that X ∼ N(µ, σ2/n).

▶ Take α = 0.05, then we want to find a and b such that

P(a ≤ X ≤ b) = 0.95.

▶ This can be done using the empirical rule and noting that it will be
roughly ±2SE(θ̂) from θ̂.

▶ In general, easier to standardize taking
Z = (X − µ)/(σ/

√
n) ∼ N(0, 1).
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Confidence Intervals: Normal Population, Continued
▶ With Z , we can use critical values since there is no

dependence on parameters.

▶ If we take z0.025 = −1.96 and z0.975 = 1.96 then we know that

P
−1.96 ≤ X − µ

σ/
√

n ≤ 1.96
 = 0.95.

▶ We can solve for the upper and lower bounds here, which would
give:

▶ ℓ = X − 1.96 σ√
n .

▶ u = X + 1.96 σ√
n .

▶ We write this often as X ± 1.96 σ√
n .
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Confidence Intervals: Interpretation

▶ Before data collection, the process we defined had a 1 − α
chance of constructing an interval which contained the truth.

▶ Important: it is NOT correct to say that
P(θ ∈ [ℓ, u]) = 1 − α.

▶ Once the interval is constructed, the truth either is or is not in the
interval.

▶ The probability that it is contained there is either 1 or it is 0.

▶ The correct interpretation is: If we were to repeat this
procedure many times, in approximately (1 − α)% of cases, the
constructed interval is expected to contain the truth.

▶ Imagine drawing a ball from a bag containing 95 red and 5 blue marbles.
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Further Notes on Confidence Intervals
▶ The level of the interval can be selected based on the given use

case; different critical values will be required.

▶ Generally we will use ±zα/2 for normal populations from earlier in the
course.

▶ When the distribution relies on unknown parameters, the
interval cannot be exactly constructed as described.

▶ If we find a statistic with a sampling distribution that does not
depend on any unknown parameters, this is called a test
statistic.

▶ These are generally very useful for constructing confidence intervals, as
we saw.

▶ The intervals we considered are symmetric about θ̂.
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Margin of Error

▶ If we consider a symmetric interval, then the distance u − θ̂ and
θ̂ − ℓ will be equal.

▶ We call this distance the margin of error.
▶ If the width of a confidence interval is w = u − ℓ, then margin of error

is w
2 .

▶ The margin of error is a measure of how precise the estimate is,
with smaller values being preferable all else equal.

▶ Generally, the margin of error will shrink as the confidence level
shrinks (i.e., large values of α) and as the standard error of the
estimator shrinks.

▶ It will typically depend on the sample size.
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Summary

▶ Confidence intervals are random intervals which quantify
uncertainty in point estimation.

▶ Confidence intervals are formed by inverting a sampling
distribution for the parameter of interest.

▶ Confidence intervals can be interpreted based on repetitions of
the underlying experiment.

▶ The margin of error measures the size of a confidence interval,
and is useful for sample sizing.
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